Handbook for Authors of Transition

Statements
by
Dick Stevens
July 28, 2002

The Processing Graph Method Tool (PGMT) product is being released under the GNU General
Public License Version 2, June 1991 and related documentation under the GNU Free
Documentation License Version 1.1, March 2000. http://www.gnu.org/licenses/gpl.html

[I ntroduction

The purpose of this handbook isto describe for the PGMT (Processing Graph Method Tool) GUI (Graph
User Interface) operator how to write a transition statement.

The style of this handbook is intended to be casual; we write asif we were speaking directly to the
operator. Accordingly, the term you refersto the operator.

As described in the GUI Handbook, the GUI provides a means whereby you, the operator, can prescribe
aPGM processing graph. The GUI stores the information in your processing graph in a GS- (Graph
State File). The Trandator generates C++ source code for your processing graph. When thiscodeis
compiled and linked with the PGMT source code, along with your hand-written command program, it
may be executed to process data as prescribed by your processing graph.

Some diagnostics are available within the GUI to help identify certain errorsin your processing graph.
These diagnostics are necessarily incomplete; some errors can only be caught later — at compile time or
at run time.

To provide some context, we will discuss what Transator does automatically, followed by a description
of what you, the operator, must do. We will then give alist of the functions provided by PGMT that
may be called within the transition statement. Any additional functions, such as might be found in a
third-party library or ones you may write yourself, may also be used, and we will explain how to do that.

We give an example of code that will construct atoken with height 3 in Appendix A. Appendix B
shows code that can be used to access the same token.

[What you Should Know

We assume that you are familiar with the PGM Spec (Processing Graph Method 2.1 Semantics, by
David J. Kaplan and Richard S. Stevens, July 18, 2002). We assume you are also familiar with the
PGMT User's Manual (Processing Graph Method Tool (PGMT) User's Manual, by Wendell Anderson,
March 20, 2002) as well as the GUI Handbook (Processing Graph Method - GUI Handbook, by Michal
Iglewski, July 17, 2002).

We assume that you have some programming experience with C++. In particular, it would be helpful
for you to know about the class templates vector and deque as defined in the STL (Standard Template
Library). There are numerous books about the STL available. We will not cite any here.

In the management of afamily in PGMT, we usually use two data structures. Thefirst isthe data array.
Thisis stored in avector, as defined inthe STL. The data are the leaves, stored in row-major order (i.e.,
last index varying most rapidly). We store the family tree in a separate data structure called the
Descriptor. In PGMT thereisaclass called GCL_Descriptor, which defines methods for accessing the
family tree, which can be used, for example to calculate the offset of any leaf from its family indices.
We do not use the standard C++ notation for indexing in the code. Rather we use a vector of indices, as
we will describe below.

1 What the Translator Doesfor You

From your GSF, the Translator generates a C++ header file containing a set of class definitions. There
isaclass definition for your processing graph, generated from its Exterior Form, and a class definition
for each Transition Exterior Form. This header file contains all of the header information as well as all
the specific method bodies for each class. The reason for putting all of the method bodies in the header
fileis because of the possibility that some of the class definitions may result in class templates.
Different C++ compilers handle class templatesin different ways, creating a number of problems with
the traditional approach of defining the classes and prototypes in header files and the method bodiesin
files separate form the header files. Our choice of putting everything into a header file follows the lead
of the Standard Template Library.

The class definition for each of your transition exteriors includes a method called tranStmt() (short for
Transition Statement). The Trandator generates the body of this method, including some declarations of
variables as well as the code that you write in the Transition Statement Form in the GUI. It isimportant
to understand that the Transition Statement executes exactly once during each execution of the
Transition.

The automatically generated variable declarations are the names of the input ports and output ports that
you defined in the Transition Exterior Form. Exactly what each of these port names represents depends
on the port definition, as described below:

For an input port or output port
» If the port family has height O (i.e., the input port has no family tree):
» If the mode of the port has height O (i.e., the tokens have height 0), the port name is declared
to be of the base type.

o If the port isan input port, you may assume that the variable has been assigned the value
of the token read in for the current execution of the Transition.

o If the port is an output port, you must write the Transition Statement to assign the output
token value to this variable.

» If the mode of the port has height > O (i.e., the tokens have height > 0), the port nameis
declared to be the workspace associated with the port. The workspace is variable defined by
aclassin PGMT for the purpose of managing tokens with height > 0. We describe the
workspace methods for managing tokens below under the heading Functions Available To
You.

o If theport isan input port, you may assume that the workspace contains the token read in
for the current execution.

o If the port is an output port, you must write the Transition Statement to create the output
token within this workspace.

o If the port family has height > O (i.e., the input port has a non-empty family tree), then thereisa
family of possibly many ports. For each such port family, the port family name represents a
single workspace, which contains a single token that is the aggregate assembly of all the tokens.
The height of the token contained in this workspace is the sum of the mode height (i.e., the
height of each token read at each port in the port family) and the port family height. Moreover,
the appropriate number of upper levels of thistoken's family tree must match the port family
tree.

» If the port isan input port family, then you may assume that the workspace contains the
token assembled from all the tokens read at the input portsin the port family. The upper
levels of the token's family tree will match the port family tree.

» If the port is an output port family, then the token you construct will be automatically
disassembled into separate tokens, each to be produced at the respective output port in the
port family. A run-time error will occur if the upper levels of the token's family tree do not
match the port family tree.

AV What You Must Do

As noted in the previous section, you must write the body of the Transition Statement to define the
output token for each of the Transition's output ports. If the output token's height is zero, thisissimply a
matter of assigning the value to the respective variable whose name is that of the output port. If the
output token's height is non-zero (i.e., the port mode or the port family has non-zero height), then you
must use the workspace (variable name isthat of the output port) to construct the token to be output. If
the port family has non-zero height, you must also be sure that the upper levels of the tokens family tree
match the output port's family tree.

Also, you must ensure that you do not create any memory leaks. While PGMT was written with great
care to delete all memory allocated within the PGMT code, it isimpossible for PGMT to delete memory
allocated within the code that you write in the Transition Statement. Unfortunately thisis a consequence
of our choice of C++ as the language for PGMT. Thereis no garbage collection within the standard

C++ language. If you alocate memory and fail to deleteiit, it will leak. If your Transition Statement
leaks memory, no matter how slowly, and if your graph runs long enough, it will eventually use up all
available memory.

Onefina caution about memory leaks: It isas bad to delete memory that has already been deleted as it
is not to delete memory that has been allocated. If you delete memory that has already been deleted,
then it is possible for that deleted memory to be reallocated and your deleting it will causeit to be
returned to the memory heap while you intend to continue using it.

To assist in finding and eliminating memory leaks, there are software tools available. We do not
recommend any specific ones here.

V Functions Availableto You

In this section, we speak of an input token or output token as seen from within the transition statement.
Thus, an input or output token will have height O if and only if both the port mode and the port family
have height O.

For each input port and each output port where the token has height O, the port name simply represents
the value of the respective token read from or produced to the port. No additional PGMT functions are
needed to support management of input or output tokens with height O.

The functions we describe below are all methods of classes. Most of the classes are templates with base
type T (base type being the base type of the token). For each method we will give the class of which it
isamethod as well as the method's prototype and a brief description of the function's arguments and its
returned value.

The class templates vector and deque are defined in the Standard Template Library, which is bundled
with the GNU C++ compiler.

For each input port and each output port where the token has non-zero height, the port name represents
the respective workspace (i.e., the workspace itself, not a pointer to it). First welist the PGMT

functions that may be used to uncover the structure of an input token. Following that, we list the PGMT
functions that may be used to construct an output token.

V.A Functionsfor Uncovering the Structure of an Input Token
In this section we give the prototypes of various functions that you can use in the transition statement.

V.A.1 Methods of the classWorkSpace T<T>:

For prototypes and definitions, refer to files:
GCL_WorkSpace T.h,
GCL_WorkSpace.h,
GCL_WorkSpace.cpp.

const GCL Token T< T > *get Token () const;
Returns a pointer to the token stored in the workspace.

const GCL _Descriptor *getDescriptor () const;
Returns a pointer to the token's descriptor.

unsi gned int getNunChildren () const;
Returns the number of Children in the token.

unsi gned int getNunLeaves () const;
Returns the number of Leavesin the token.

unsigned int getDepth () const;
Returns the token height (attribute of the token).

unsigned int get tokenHt () const;
Returns the token height (attribute of the WorkSpace).

const GCL BaseType get tokenBaseType () const;
returns the token base type (attribute of the WorkSpace - really the MPI base type).

deque<const GCL_Token T<T> *> * unpack ();
returns an allocated deque of allocated token pointers to the children of the token.

V.A.2 Methodsof theclassToken T<T>:
For prototypes and definitions, refer to files:

GCL_Token T.h,
GCL_Token.h,
GCL_Token.cpp.

const GCL _Descriptor *get descriptor () const;
returns a pointer to the descriptor of the token.

unsi gned int getlLeaf Count () const;
returns the total number of leaves in the token.

unsi gned int getChildCount () const;
returns the number of children (i.e., the number of rows).

unsigned int getDepth () const;
returns the height of the token.

i nt get Lower Bound () const;
returns the lower bound of the first index.

T *getLeaf Array ();
returns a pointer to the leaves, (A one dimensional array. We use offset to refer to the index into
thisarray. The offset may be any integer value between 0 and leafCount — 1.) The pointer
returned by this method may be used to pass the token datato a C routine asan array. Y ou
should be cautioned against passing this array directly if the routine will modify the datain
place. It will cause the token's data array to be altered.

T get Leaf (const vector<int> & indices) const;
returns the leaf whose indices are in the vector argument.

Additional functions not of any class may be used to assemble and disassemble tokens. See section V.C
below for descriptions of these functions.

V.A.3 Methods of the class Descriptor:

The methods of this class may be useful if you want to find the details of afamily tree directly from the
descriptor. In particular, the lower and upper index bounds can be found for the family descriptor. But
the lower and upper bounds of its children are not directly accessible from the descriptor. However, you

can use the "makeChildren" method below to obtain descriptors of the children. Then from each such
descriptor, you can find out the lower and upper bounds.

Another approach would be to call the function "getIndices' below with the "offset" successively set the
to0, 1, ..., leafCount — 1, where the leaf Count is the total number of leavesin the family. By examining
the index vectors that are returned, you can infer the lower and upper bounds of the children and al the
descendants.

For prototypes and definitions, refer to files:
GCL_Descriptor.h,
GCL_Descriptor.cpp.

i nt get Lower Bound() const;
returns the lower bound

unsi gned int getChildCount() const;
returns the number of children

unsi gned i nt getLeaf Count();
returns the number of leaves

unsi gned int getDepth();
returns the height

deque<const GCL_Descriptor *> * nakeChil dren() const;
returns a deque of descriptors of the children. This function constructs a deque of pointersto
descriptors and returns a pointer to it. You will have to call the destructor for each child
descriptor and for the deque itself to avoid amemory leak. Destroying the child descriptorsis
facilitated by the following function "clearDeque" described below in V.C.

unsigned int getOfset(const vector <int> & indices) const;
returns the data offset corresponding to given index vector.

vector<int> * getlndices(unsigned int offset) const;
returns the index vector corresponding to given leaf offset. The index vector returned is
alocated by the method, and you are responsible for deleting it when you are through with it.

V.B Functionsfor Constructing an Output Token

V.B.1 Methods of the classWorkSpace T<T>:

For prototypes and definitions, refer to files:
GCL_WorkSpace T.h,
GCL_WorkSpace.h,
GCL_WorkSpace.cpp.

bool checkToken () const;
Returnstrue if the WorkSpace contains a token; otherwise returns fal se.

void storeToken (const GCL_Token_T< T > *);
Stores the token into the WorkSpace.

voi d pack (deque< const GCL_Token T< T > * > &,
unsi gned int inDepth);
Assembl es the tokens whose pointers are in the deque and stores the resulting token in the
WorkSpace. The second argument inDepth must match the common depth of the tokensin the
deque. Thisargument is necessary if the dequeis empty. The token height will be inDepth + 1.

const GCL _Descriptor * getPortFam | yDescriptor() const;
Returns a pointer to the descriptor of the port family. Thisisuseful if you have to construct a
token for an output port family. This descriptor will be the parent of the assembled output token
(see the function "assemble” in V.C below.

V.B.2 Methodsof theclass Token T<T>:
For prototypes and definitions, refer to files:
GCL_Token T.h,
GCL_Token.h,
GCL_Token.cpp.

GCL_Token T (const GCL_Token T<T> &);
Constructs atoken that is a copy of the given token.

GCL_Token T (const GCL_Descriptor *);
Constructor that makes atoken with the given descriptor. The dataarray isfilled with the default
value of the base type (usually 0).

GCL_Token_T (const deque <const GCL_Token T<T> *> & i nDeque,
const GCL Descriptor & descriptor,

unsi gned int tokenDepth);
Constructs atoken that is assembled from the given descriptor (second argument) for the upper
levels and the deque of tokens (first argument) for the lower levels. The tokenDepth (third
argument) must match common height of the tokens in the deque. This argument is necessary to
cover the case where the deque is empty. The number of leaves in the descriptor must match the
number of tokens in the deque.

unsigned int setValues (T *array, unsigned int count = 1,
unsigned int offset = 0);
Sets the values consecutively in the array into the data array of the token. The number of values
stored is given by the second argument, and the first element of the array is stored at the offset
position. Memory outside the data array of the token is protected; i.e., the function copies the
values until the argument count is reached or until the last element of the data array isfilled,
whichever occursfirst. The value returned is the actual number of values stored.

T *getLeaf Array ();
returns a pointer to the leaves, (A one dimensional array. We use offset to refer to the index into
thisarray. The offset may be any integer value between 0 and leaf Count — 1.)

voi d put Leaf (const vector<int> & indices, T value);
assigns the value to the leaf in the token identified by the index vector "indices'.

Additional functions not of any class may be used to assemble and disassemble tokens. See section V.C
below for descriptions of these functions.

V.B.3 Methods of the class Descriptor:

The methods of this class may be useful if you want to construct a descriptor for atoken directly from
the descriptor. Y ou may then use this descriptor as an argument to a constructor function above and
then fill the leaves into the data array.

For prototypes and definitions, refer to files:
GCL_Descriptor.h,
GCL_Descriptor.cpp.

First we give alist of some of the useful descriptor constructors:

GCL_Descriptor ();
Thisisthe default constructor: It constructs a family with depth 0; i.e., descriptor of a scalar.

GCL_Descriptor (const GCL _Descriptor & descriptor);
Thisisthe copy constructor: It makes a descriptor that is acopy of the argument.

GCL_Descriptor (const GCL Descriptor & descriptor,
const _vector _int & indices);
Constructor of a descendant of a given descriptor. The vector of indices identifies the
descendant.

GCL_Descriptor (unsigned int inDepth);
Constructor: empty family with given depth.

GCL_Descriptor (int |owerBound, unsigned int childCount);
Constructor with lower bound and child count, The height will be 1.

GCL_Descriptor (const vector<unsigned int> & di nensions,
int | owerBound = 0);
Constructor of completely regular descriptor. In aregular descriptor, al children have identical
descriptors. 1n acompletely regular descriptor, all descendants at each level have identical
descriptors. In simple terms, a completely regular descriptor is rectangular in every dimension.

GCL_Descriptor (const deque<const GCL _Descriptor *> & indeque,
unsigned int inDepth, int |owerBound = 0);
Constructor with given deque of children.

const GCL _Descriptor * getPortFam | yDescriptor() const;
Returns a pointer to the associated Port Family Descriptor.

V.C Useful functions not of any class

tenpl ate <class T> void cl ear Deque (deque<T *> & nyDeque);
Clears a deque of pointersto things of any type. Specifically, deletes all of the itemsto which
the deque points and empties the deque. If the deque, itself, was allocated and you are finished
with it, then you should del ete the deque after clearing it.

const GCL _Descriptor * assenble (const GCL _Descriptor & parent,
const deque <const GCL_Descriptor *> & children,
unsi gned int chil dDepth);
Assembles a new descriptor from the parent to make the upper levels and attaching the
respective child descriptors in the deque to the leaves of the parent. The third argument gives the
common height of the children. Thisargument is necessary to account for the possibility that the

parent has no leaves — in which case the deque of children must be empty. For thisfunction to
be successful, the deque must have the same number of children as there are leaves in the parent.

const GCL Descriptor * disassenble (
const GCL Descriptor & descriptor,
deque <const GCL_Descriptor *> & children,
unsi gned int chil dDepth);
Disassembles the given descriptor so that the children have the depth given in the third argument.
The function returns a pointer to an allocated descriptor for the upper levels, and pointersto the
allocated child descriptors are placed in the deque in the second argument.

GCL_Token _T<T> * pack (const deque<const GCL Token T<T> *> & i nDeque,
unsi gned int inDepth);
Takes adeque of tokens and packs them into a single token, returning a pointer to the resulting
token. The second argument inDepth must match the common height of the tokens in the deque.

deque<const GCL_Token T<T> *> * unpack (const GCL_Token T<T> &

i nToken) ;
Takes atoken with height > 0 and unpacks it into a deque of token pointers with height one
lower than the given token. Returns a pointer to the resulting deque.

VI How To Add Additional Functionsand Data Types

Y ou may want to define some additional functions of your own for use in transition statements. Or you
may want to use one or more C or C++ routines that you obtain from athird-party library. Finaly, you
may even want to define your own datatypes. Once the datatypes are defined, you will want to
incorporate the functions and data types into your PGMT application. You must do the following:

» Enter the header files containing the prototypes of the class and data type definitionsin the Type
List Form (See the GUI Handbook).

» Make sure that the body files (*.c or *.cpp) are compiled and linked with your application.

» Make surethat any datatypes that you define in separate files (classes and structures) are
processed by MTOOL in order to make sure that the appropriate MPI data types are constructed.
The resulting files generated by MTOOL must also be compiled and linked with your
application. See the document "MTOOL/PGMT Integration, by Roger Hillson".

VIl Command Program Interface with the graph

All of the functions described in section V above are available for use in the Command Program. Each
Graph Input Port and Output Port has an associated Work Space that is accessible to the Command
Program, just as the Transition Input Ports and output ports are accessible to the Transition Statement.

There are some difference that bear mention.

* Inthe mode of agraph port, if the token height is 0, then the Command Program Writer must
enter the token's leaf value into the Work Space for a Graph Input Port, and he/she must retrieve
the token's leaf value from the Work Space for a Graph Output Port. This differs from the
Transition Statement in that for atoken height of O, the Transition Port Name represents the | eaf
value directly.

Appendix A
Examples: Accessof Tokens

In aTransition Statement, one will usually access atoken stored in a Work Space associated with a
Transition Input Port. 1n a Command Program, the Work Space is associated with a Graph Output Port.
The following examples assume that you are accessing atoken that is contained in a Work Space.

There are several ways to access a given token. The choice of approach will depend on the token, its
height, and the complexity of its family tree, which is prescribed in its descriptor. We give some
examples of how atoken might be accessed from its Work Space. We expect that you know ahead of
time the token's family height, as thisis an attribute of the port (Transition Input Port or Graph Output
Port).

We assume that you already know how to access atoken with height O or 1. Our first example shows
how you might want to access a token with height 2. Without knowing specifically what you wish to do
with the data in the token (construct an output token to be produced in a Transition Statement or display
the datain a Command Program), we show code that prints out the datain the token along with its
family indexing.

In these examples we assume that the variable wor kspace represents the Work Space of a Transition
Input Port or Graph Output Port containing the token that we wish to access. We also assume that all
index lower bounds are 0.

A.l1 Codefor access of atoken with height 2:

/* Wor kSpace net hods */

unsi gned int | eaf Count = workSpace. get NunLeaves();
unsigned int childCount = workSpace. get NumChi | dren();
unsi gned int hei ght = workSpace. get Dept h();

/* output data */

cout << "leafCount " << |eaf Count << endl
cout << "childCount " << childCount << endl
cout << "height " << height << endl

cout << endl

/* Get the token fromthe workSpace and use Token Methods. */
/* These results should match the ones above fromthe WorkSpace. */

const GCL_Token_T<fl oat> * nyToken = workSpace. get Token();

unsi gned int nyLeaf Count = nyToken -> getLeaf Count ();

unsi gned int nyChil dCount = nyToken -> get Chil dCount();
unsi gned int nyHeight = nyToken -> getDepth();

/* output data */

cout << "nyLeaf Count " << nylLeaf Count << endl;
cout << "nyChildCount " << nyChildCount << endl;
cout << "nyHei ght " << nyHeight << endl;

cout << endl;

/* We know that the token has height 2, and we want to find out
How many el enents are in each row. */

/* Cbtain the token's descriptor. */
const GCL_Descriptor * nyDescriptor = myToken -> get__descriptor ();

/* Declare a vector to store the row sizes. */
vect or<i nt> rowSi ze;
rowSi ze. resi ze (nyChil dCount);

/* Declare and initialize two index vectors: */

/* | owerl ndexVector for the current child, */

/* upperlndexVector for the next child. */

/* W use index vectors with size 1 to specify only the first index.
The descriptor function getOfset will find the give the offset to
t he begi nning of the respective row. */

vect or<i nt > | ower | ndexVector (1), upperlndexVector(1);

/* Get the row sizes fromthe descriptor. */
/* W can do this for all but the last row, which is a special case. */

for (int i =0; i < myChildCount - 1; i++) {
/[* first index identifies the row */
upper | ndexVector[0] = i+1;

| ower | ndexVector[0] = i;
rowSi ze[i] = nyDescriptor -> getOfset(upperlndexVector)
- nyDescriptor -> getOffset(lowerlndexVector);

}

/* Get the last row size. */
rowSi ze[myChi | dCount - 1] =
nyLeaf Count - nyDescriptor -> get O fset(upperlndexVector);

/* Decl are nyl ndexVector to access the |eaves. */
vect or <i nt > nyl ndexVect or (2);

/* Print out the indices and | eaf values of the token using a nested | oop.
cout << "token l|leaf values:" << endl;
for (int i =0; i < nyChildCount; i++) {

if (rowSize[i] > 0) {

cout << " leaves inrow" << i << ":" << endl
nyl ndexVector[0] = i;
for (int j =0; j <rowSize[i]; j++) {

nyl ndexVector[1] = j;

cout << " leaf [" << i << "][" <<] << "] =" <<
myToken -> get Leaf (nyl ndexVector) <<
endl

}
}

else cout << " row" << i << " is enpty" << endl

A.2 Codefor access of atoken with height 3:

Accessing atoken with height 3 is more involved, because the family tree at the lower levelsis not
immediately accessible directly from the token. Thus we "unpack™ the token's descriptor to obtain alist
(actually adeque, as defined in the STL) of the child descriptors, each of which will have height 2. We
use these descriptors to uncover the family tree structure of the token and display its leaves.

/* WorkSpace met hods */

unsi gned int | eaf Count = workSpace. get NunLeaves();
unsigned int childCount = workSpace. get NumChi | dren();
unsi gned int height = workSpace. get Dept h();

/* output data */

cout << "leafCount " << |eafCount << ", expecting 15." << endl
cout << "childCount " << childCount << ", expecting 3." << endl
cout << "height " << height << ", expecting 3." << endl

cout << endl

/* Get the token fromthe workSpace and use Token Methods. */
const GCL_Token_T<int> * myToken = wor kSpace. get Token();

unsi gned int nyLeaf Count = nyToken -> getLeaf Count ();
unsi gned int nyChil dCount = nyToken -> get Chil dCount ();
unsi gned int nyHeight = nyToken -> getDepth();

i nt nyLowerBound = nmyToken -> get Lower Bound();

/* output data */

cout << "nmyLeaf Count " << nyLeafCount << ", expecting 15." << endl
cout << "nyChil dCount " << nyChildCount << ", expecting 3." << endl
cout << "nyHeight " << nyHeight << ", expecting 3." << endl

cout << "nyLowerBound " << nyLowerBound << ", expecting 0." << endl
cout << endl

/* Here we prepare to output the stuff of the token. */

/* There are no functions defined that will give all of the
i ndex ranges directly fromthe highest |evel
of a height 3 token.
So we unpack the top | evel descriptor to get a deque of descriptors
for the children, and we work fromthere. */

/* Note: We could sinply unpack the tokens;
However we give this approach as an alternative. */
const GCL_Descriptor * descriptor = workSpace. get Descriptor();

/* Get a deque of the descriptor's children. */
deque <const GCL_Descriptor *> * descri ptorDeque
= descriptor -> nmakeChildren();

/* NOTE: the descriptoreDeque is allocated within the above nethod
as are the descriptors in the deque. To avoid a nmenory |eak
we nmust renmenber to clear the deque and then delete it. */

/* declare an iterator for the descriptors in a deque */
deque <const GCL_Descriptor *>::iterator descriptorDequelter

/* Declare a vector to store the row sizes
in each of the child descriptors. */
vect or<i nt> rowSi ze;

/* Declare some other variables to be used for each descriptor in the deque. */
unsi gned i nt nmyChil dLeaf Count;

unsi gned int nmyChil dChil dCount;

unsi gned int myChil dHei ght;

/* Declare two index vectors. */

/* | owerl ndexVector for the current child. */

/* upperlndexVector for the next child. */

vect or<i nt > | ower | ndexVector (1), upperlndexVector(1);

/* Now go through each unpacked token in the same way as in the
regul ar and irregul ar exanmples */

cout << "Data for token follows:" << endl

/* Declare a descriptor pointer to be used for each descriptor in the deque. */
const GCL_Descriptor * nyChil dDescri ptor;

/* Decl are nyl ndexVector to access the | eaves of the original token. */
vect or <i nt > nyl ndexVect or (3);

/* Loop through the descriptors in the deque */

int kK =0;
for (descriptorDequelter = descriptorDeque -> begin();
descri ptorDequel ter != descri ptorDeque -> end();

descri pt or Dequel ter ++, k++) {
myChi | dDescri ptor = *descri pt or Dequel ter;

/* Get sone data about the child. */

myChi | dLeaf Count = myChi |l dDescri ptor -> getLeaf Count ();
myChi | dChi | dCount = nyChil dDescri ptor -> get Chil dCount ();
myChi | dHei ght = myChi | dDescri ptor -> get Depth();

/* W use index vectors with size 1 to specify only the first index.
The descriptor function getOffset will give the offset in the data vector to

t he begi nning of the respective row. */

if (myChildChildCount <= 0) cout << "Child [" << k << "] is enpty." << endl

el se {

/* resize the rowSi ze vector */
rowSi ze. resi ze (nyChil dChil dCount);

/* Get the row sizes fromthe descriptor. */
/[* W can do this for all but the last row, which is a special case. */

for (int i =0; i < nmyChildChildCount - 1; i++) {
/* first index identifies the row */
upper | ndexVector[0] = i +1;

| ower | ndexVector[0] = i;
rowSi ze[i] = nyChildDescriptor -> getOfset(upperlndexVector)
- nyChil dDescriptor -> get O fset (| owerl ndexVector);

}

/* Now get the last row size. */
rowSi ze[myChi | dChi | dCount - 1] =
nmyChi | dLeaf Count - myChil dDescriptor -> get O f set (upperl ndexVector);

/[* Print out the leaf values of the token in a 3-level nested | oop. */
nyl ndexVector[0] = k;
cout << "leaves in child [" << k << "]:" << endl;
for (int i =0; i < nmyChildChildCount; i++) {
if (rowSize[i] <= 0) cout << "descendant ["
<< k << "][" <<i << "] is enpty." << endl;
el se {
cout << leaves in [" << k << "][" << i << "]:" << endl;
nyl ndexVector[1] = 1i;
for (int j =0; j <rowSize[i]; j++) {
nmyl ndexVector[2] = j;

cout << " leaf [" << k << "][" << i << "][" << << "] =" <<
nyToken -> get Leaf (nmyl ndexVector) <<
endl ;

}
}
}

}
cl ear Deque(*descri pt or Deque) ;

del et e descri pt or Deque;

Appendix B
Examples: Construction of Tokens

In a Transition Statement, one will usually construct a token to be stored in a Work Space associated
with a Transition Output Port. In a Command Program, the Work Space is associated with a Graph
Input Port. The following examples assume that you are constructing a token to be contained in a Work

Space.

There are several ways to construct a given token. The choice of approach will depend on the token, its
height, and the complexity of its family tree, for which we construct its descriptor. We must construct a
token whose family height matches that specified for the port (Transition Output Port or Graph Input
Port).

We assume that you already know how to construct a token with height 0 or 1. Our first two examples
show code to construct a token with height 2; the first example for a completely regular token, and the
second for atoken that is not regular. The third example shows code to construct a token with height 3:
specifically the example cited in the PGM Spec.

In these examples we assume that the variable wor kspace represents the Work Space of a Transition
Output Port or Graph Input Port to contain the token that we construct. We make sure that all index
lower bounds are 0 (an exception to the example in the PGM Spec).

B.1 Codeto construct acompletely regular token with height 2

/**************************************

First we build the descriptor using a special constructor
for regular famlies.

Then we construct a token with that descriptor and

popul ate its Data Vector before putting it in the workspace

Note that in the descriptor class, user-defined | ower bounds

for famly indices are supported.

The intent was for fanmilies of nodes, fanilies

of node ports, famlies of included graphs, etc.

However for tokens we do not support user-defined | ower bounds.

In a token, all |ower bounds for indices are set to O.

If the Command Program Witer or Transition witer constructs a token
with a non-zero | ower bound for an index and that token is unpacked
via an unpack transition, the | ower bound for the famly index is |ost.

The unpack transition produces a sequence of tokens, each
corresponding to a respective child of the input token.

**************************************/

/* Declare a vector with two unsigned integers
to specify the two di mensions */
vect or <unsi gned i nt> di nvVector (2);

/* Then initialize it with the desired di mensions */
di mVector[0] = 2; [* nunber of rows */
di nVect or [1] 3; /* nunber of colums */

/* Create a regul ar descriptor */

/* Note, because this will be the descriptor of a token
we omt the second argurment, allowi ng the default value of 0
for the | ower bound. */

GCL_Descriptor * descriptor = new GCL_Descriptor (dinVector);

/* Use this descriptor to create a token with base type float */
CGCL_Token_T<float> * token = new GCL_Token_T<fl oat> (descriptor);

/*************************************

A WORD OF ADVI CE: The above allocates nenmory for a descriptor
and returns a pointer to that descriptor. This descriptor

t hen becones part of the token that is constructed

If you are in a transition statenent and you want an out put
token to have a descriptor that is identical to the descriptor
of an input token, you nust make a copy of the input token's
descriptor using the copy constructor.

The reason is because the input token's descriptor will be
automatically deleted after the Transition Statenment has

fini shed execution

*************************************/

/* At this point we have a token whose data array is filled
with float 0s. So we now fill in the data. */

/* First, define an indexVector for accessing the data. */
vector<int> i ndexVector(2);

/* Then go through a nested |loop to define the data */

for (int i =0; i <2; i++) {
i ndexVector[0] =i; /* set the row index */
float baseValue = 39 + 10 * i; /* set the base value */
for (int j =0; j <3; j++) {
i ndexVector[1] =j; /* set the columm index */

/* set the | eaf value and bunp the baseValue for the next |eaf */
token -> putLeaf (i ndexVector, baseVal ue++);
}
}

/* Finally, we put this token into the workSpace */
wor kSpace. st or eToken(t oken);

B.2 Codeto construct an irregular token with height 2

/**************************************

Exanpl e to show how to build an irregul ar token of height 2
and store it in a WrkSpace.

We build a triangular token with four rows

(n-th row has n elenents for row nunber n = 0, 1, 2, 3)
and store it in a workspace.

Note that the first row (with index 0) is enpty.

**************************************/

/**************************************

W meke the descriptor for each row and add it to
a deque of descriptors. This deque is then used to nmake the
hei ght 2 descriptor.

**************************************/

/* Declare a deque for the pointers to descriptors */
deque<const GCL_Descriptor *> descri ptorDeque;

/* In a |loop, construct a descriptor for each row and add it to the deque.
for (int i =0; i < 4; i++) {
/* This version of the GCL_Descriptor constructor constructs
a descriptor for a height 1 famly.
The first argument (0) is the index | ower bound.
The second argunent (i) is the nunber of |eaves */
descri pt or Deque. push_back(new GCL_Descriptor(0,i));

}

/* Use the deque to create the height 2 descriptor. */
/* The first argument is a deque of descriptors.
The second argunent is the comon height of the descriptors
in the deque. */
GCL_Descriptor * descriptor = new GCL_Descriptor (descriptorDeque, 1);

/* The deque is no | onger needed, so clear it to prevent a menory |eak. */
cl ear Deque(descri pt or Deque) ;

/* The descri ptorDeque was declared — not allocated - and thus wll
automatically be del eted when it goes out of scope. */

/* Use this descriptor to create a token with base type float. */
GCL_Token_T<float> * token = new GCL_Token_T<fl oat> (descriptor);

/*************************************

A WORD OF ADVI CE: The above allocates nenmory for a descriptor
and returns a pointer to that descriptor. This descriptor
t hen beconmes part of the token that is constructed.

*/

If you are in a transition statenment and you want an out put
token to have a descriptor that is identical to the descriptor
of an input token, you nust copy the input token's descriptor.

*************************************/

/* At this point we have a token whose data array is filled
with float 0s. So we now fill in the data. */

/* First, define an indexVector for accessing the data. */
vector<i nt> i ndexVector(2);

/* Then go through a nested |loop to define the data */

for (int i =0; i < 4; i++) {
i ndexVector[0] =i; /* set the row index */
float baseValue = 39 + 10 * i; /* set the base value */
for (int j =0; j <i; j++) {
i ndexVector[1] =j; /* set the columm index */

token -> putLeaf (i ndexVector, baseVal ue++);
/* set the | eaf value and bunp for the next */

}
}

/* Finally, we put this token into the workSpace */
wor kSpace. st or eToken(t oken);

B.2 Codeto construct an irregular token with height 3

This example shows code to construct atoken that is almost the same as that shown in the PGM Spec on
page 4. The mgjor differenceisthat in thisexample, all index lower bounds are 0.

Reason: Because the Pack Transition does not support user selection of index lower bounds, and
automatically setsall lower boundsto 0. Also, the Unpack Transition ignores the index lower bound
when unpacking atoken. The stream of tokens produced is produced to the respective output placein
the order that they appear as children in the input token.

/**************************************

Exanpl e to show how to build a token of height 3
and store it in a WrkSpace

Except for the | ower bound indices,

we build the exanple token shown on page 4 of the
PGM Speci fication, July 18, 2002

In this exanple, we set all |ower bound indices to O.

**************************************/

/**************************************

We show how to build a token | evel by |evel

**************************************/

/* The final token will have height 3, and we build it from height 2 tokens.
So we build the height 2 tokens, each from height 1 tokens. */

/* declare two deques -

one for height 1 tokens and one for height 2 tokens. */
deque <const GCL_Token_T<i nt> *> tokenDequel;
deque <const GCL_Token_T<int> *> tokenDequeZ2;

/* declare an array for initial val ues
this array size to acconmodate the size of the |argest height 1 token. */
i nt dataVal ues[4];

/* declare a pointer to a token with base type int. */
CCL_Token_T<int> * token

/* declare an int for height one token size. */
int tokenSize;

/* Height 1 token[O0][0O] token has 3 children: */
t okenSi ze = 3;

t oken = new GCL_Token_T<i nt >(new GCL_Descri pt or (0, t okenSi ze)) ;

/* enter the initial values into the array. */

for (int i =0; i < tokenSize; i++) {
dat aVal ues[i] =39 + i;
}

/* initialize the token data. */
t oken -> set Val ues(dat aval ues, tokenSize);

/* store the token in the deque. */
t okenDequel. push_back(t oken);

/* Height 1 token [0][1] also has 3 children: */
t okenSi ze = 3;
t oken = new GCL_Token_T<i nt >(new GCL_Descri pt or (0, t okenSi ze)) ;

/* enter the initial values into the array. */
for (int i = 0; i < tokenSize; i++) {

dat aVal ues[i] =49 + i;
}

/* initialize the token data. */
t oken -> set Val ues(dat aval ues, tokenSize);

/* store the token in the deque. */
t okenDequel. push_back(t oken);

/* Now ready to create Height 2 [0] token
fromthe deque of height 1 tokens.
W pack the deque and store the resulting token
in the deque of height 2 tokens. */

t okenDeque?2. push_back (pack (tokenDequel, 1));

/* Having done that, we clear the deque of height 1 tokens. */

/* Function deallocates the nenory for the height 1 tokens
and enpties the deque. */

cl ear Deque (tokenDequel);

/* Repeat the process for Height 2 [1] token
Whi ch happens to be enpty. */
t okenDeque?2. push_back (pack (tokenDequel, 1));

/* Don't really need to clear an enpty deque (no problemif we did).

/* Now for Height 2 [2] token
W repeat the above with fewer conments
in a loop over the height 1 tokens */

/* Declare the base val ue */
i nt val ueBase;

for (int i =0; i < 4; i++) {

*/

switch (i) {

case 0:
t okenSi ze = 4;
val ueBase = 0;
br eak;

case 1:
t okenSi ze = 3;
val ueBase = 9;
br eak;

case 2:
t okenSi ze = 0;
val ueBase = 0;
br eak;

case 3:
t okenSi ze = 2;
val ueBase = 28
br eak;

}
token = new GCL_Token_T<i nt >(new GCL_Descri pt or (0, t okenSi ze)) ;

for (int j =0; j < tokenSize; j++) {
dat aVal ues[j] = val ueBase + j;

}

t oken -> set Val ues(dat aval ues, tokenSize);

t okenDequel. push_back(t oken);
}

/* Make Height 2 token [2] fromthe deque of tokens
and add it to the deque. */
t okenDeque?2. push_back (pack (tokenDequel, 1));

/* Cear the deque. */
cl ear Deque (tokenDequel);

/* Make the height 3 token and store it in the workspace. */
wor kSpace. st oreToken(pack (tokenDeque2, 2));

/* Cear the deque of height 2 tokens. */
cl ear Deque (tokenDeque?2);

